

SC16-200SW0D

Features

- RoHS Compliant and Halogen-Free
- Radial leaded Devices
- Cured,flame retardant epoxy polymer insulating material meets UL94V-0 requirements
- Operation Current:2.0A, Maximum Voltage: 16Vdc, Operating Temperature: -40°C to +85°C

Applications

- Computers and peripherals
- Power ports
- General electronics

Electrical Parameters

Part Number	I hold (A)	I trip (A)	V _{max} (Vdc)	l _{max} (A)	P _{dtyp} (W)	Maximum Time To Trip		Resistance	
						Current (A)	Time (S)	R _{min} (mΩ)	R1 _{max} (mΩ)
SC16-200SW0D	2.00	4.00	16	40	1.0	10.0	8.0	0.030	0.075

I $_{hold}$ = Hold current: maximum current at which the device will not trip at 25 $^\circ\!C$ still air.

I $_{trip}\text{=}$ Trip current: minimum current at which the device will always at 25 $^\circ\!\!\mathbb{C}$ still air.

V $_{max}$ = Maximum voltage device can withstand without damage at rated current.

I max= Maximum fault current device can withstand without damage at rated voltage.

T _{trip}=Maximum time to trip(s) at assigned current.

P_{dtyp} = Typical power dissipation: typical amount of power dissipated by the device when in state air environment.

R $_{min}$ = Minimum device resistance at 25 $^\circ\!\mathrm{C}$ prior to tripping.

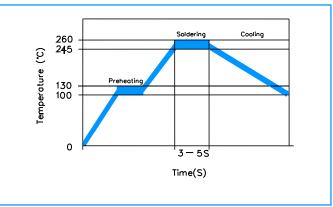
R $_{max}$ = Maximum device resistance at 25 $^\circ\!\!\!\mathrm{C}$ prior to tripping.

R1_{max}= Maximum resistance of device at 25° C measured one hour after tripping.

Caution: Operation beyond the specified rating may result in damage and possible arcing and flame.

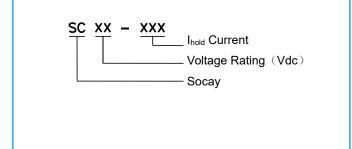
Temperature Derating Curve

SOCAY Electronics Corp., Ltd.

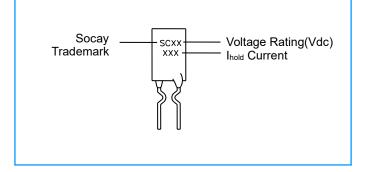


SC16-200SW0D

Test Procedures and Requirements


Test Item	Test Conditions	Accept/Reject Criteria	
Resistance	In still air @25℃	R _{min} ≤R≤R _{max}	
Hold Current	60 min, @ I _{hold}	No trip	
Time to Trip	Specified current, V _{max} , @25℃	T≤Maximum Time To Trip	
Frequency Current Withstand	V _{max} / I _{max} ,15 minute	Resistance change rate: ≤50%	
Trip Endurance	V _{max} / I _{max} ,24 hours	No arcing or burning	

Soldering Parameters



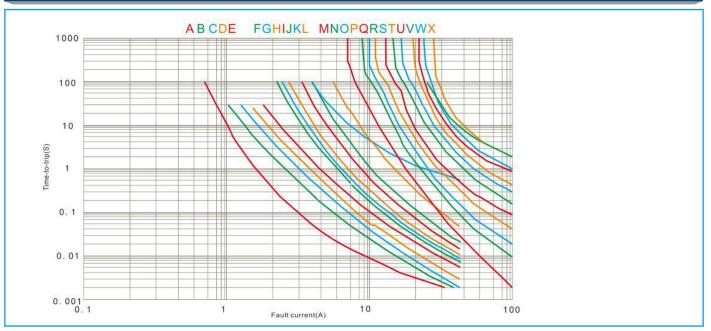
Pre-Heating Zone	Refer to the condition recommended by the manufacturer. Max. ramping rate should not exceed 4°C/Sec			
Soldering Zone	Max. solder temperature should not exceed 260 $^\circ\!\!\!\mathrm{C}$			
Cooling Zone	Cooling by natural convection in air			

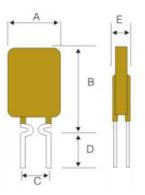
Part Numbering

Part Marking

SOCAY Electronics Corp., Ltd.

2/4


OSOCAY Electronics Corp., Ltd. 2021
Specifications are subject to change without notice.
Please refer to www.socay.com for current information.


SC16-200SW0D

Typical Time-To-Trip at 25℃±2℃

Note: K=SC16-200SW0D

Dimensions

Dout Number		Lead Material				
Part Number	A (Max)	B (Max)	С (Тур)	D (Min)	E(Max)	Tinned Metal (mm)
SC16-200SW0D	11.2	16.0	5.1	7.6	3.1	Ф0.6

Packaging Quantity

Part Number	Quantity (pcs/Bag)
SC16-200SW0D	1000

SOCAY Electronics Corp., Ltd.		www.socay.com
		@ SOCAY Electronics Corp., Ltd. 2021
Revision May 18, 2021	3/4	Specifications are subject to change without notice.

Please refer to www.socay.com for current information.

SC16-200SW0D

Warning

Mechanical Stress

PPTC devices will undergo a thermal expansion during fault condition. If PPTC devices are installed or placed in an application ,where the space between PPTC devices and the surrounding materials (e.g., covering materials, packaging materials, encapsulate materials and the like) is insufficient, it will cause an inhibiting effect upon the thermal expansion. Pressing, twisting, bending and other kinds of mechanical stress will also adversely affect the performance of the PPTC devices, and shall not be used or applied.

Chemical Pollutants

Silicone-based oils, oils, solvents, gels, electrolytes, fuels, acids, and the like will adversely affect the properties of PPTC devices, and shall not be used or applied.

Electronic and Thermal Effect

PPTC devices are secondary protection devices and are used solely for sporadic, accidental over-current or over-temperature error condition, and shall NOT be used if or when constant or repeated fault conditions (such fault conditions may be caused by,among others, incorrect pin-connection of a connector) or over-extensive trip events may occur.

PPTC devices are different from fuses and, when a fault condition occurs, will go into high-resistance state and do not open circuit, in which case the voltage at such PPTC devices may reach a hazardous level.

Operation over the maximum rating or other forms of improper use may cause failure, arcing, flame and/or other damage to the PPTC devices.

Conductive material contamination, such as metal particle, may induce shortage, flame or arcing.

Due to the inductance, the operation circuits may generate a circuit voltage (Ldi/dt) above the rated voltage of PPTC devices, which shall not be used under such circumstances.

General

Customers shall evaluate and test the properties of PPTC devices independently to verify and ensure that their individual applications will be met.

The performance of PPTC devices will be adversely affected if they are improperly used under electronic, thermal and/or mechanical procedures and/or conditions non-conformant to those recommended by manufacturer.

Customers shall be responsible for determining whether it is necessary to have back-up, failsafe and/or fool-proof protection To avoid or minimize damage that may result from extra-ordinary, irregular function or failure of PPTC devices.

Any and all responsibilities and liabilities are disclaimed if any item under this notice of warning is not complied with.