3-Electrode Gas Discharge Tube (GDT)

UN3E8 Series

Description
Gas discharge Tubes (GDT) are classical components for protecting the installations of the telecommunications. It is essential that IT and telecommunications systems - with their high-grade but sensitive electronic circuits - be protected by arresters. They are thus fitted at the input of the power supply system together with varistors and at the connection points to telecommunication lines. They have become equally indispensable for protecting base stations in mobile telephone systems as well as extensive cable television (CATV) networks with their repeaters and distribution systems.

These protective components are also indispensable in other sectors. In AC power transmission systems, they are often used with current-limiting varistors. In customer premises equipment such as DSL modems, WLAN routers, TV sets and cable modems. In air-conditioning equipment, the integral black-box concept offers graduated protection by combining arresters with varistors, PTC, diodes and inductor.

Features
- Non-Radioactive
- RoHS compliant
- Low insertion loss
- Excellent response to fast rising transients
- Ultra low capacitance
- 20KA surge capability tested with 8/20μs pulse as defined by IEC 61000-4-5
- Available with thermal failsafe option (add ‘F’ suffix to part number)

Applications
- Communication equipment
- CATV equipment
- Test equipment
- Data lines
- Power supplies
- Telecom SLIC protection
- Broadband equipment
- ADSL equipment, including ADSL2+
- XDSL equipment
- Satellite and CATV equipment
- Consumer electronics

Schematic Symbol

Agency Approvals

Product Characteristics

Materials	Nickel-plated with Tinplated wires
Product Marking | UNION XXXH
- Nominal voltage
- H -20KA
Glow to Arc Transition Current | ~1 Amps
Glow Voltage | ~70 Volts
Storage and Operational Temperature | -40 to +90°C
Weight | UN3E8-XXXHM ~2.0g
UN3E8-XXXHMF ~2.3g
UN3E8-XXXHP ~2.1g
UN3E8-XXXH ~1.8g
Climatic category (IEC 60068-1) | 40/ 90/ 21
3-Electrode Gas Discharge Tube (GDT)

UN3E8 Series

Dimensions (Unit: mm)

Radial Leaded Devices (UN3E8-XXXHM)

Radial Leaded Devices with Fail-Safe (UN3E8-XXXHMF)

"T" Leaded Devices (UN3E8-XXXHP)

Without wire Devices (UN3E8-XXXH)

Electrical Characteristics

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Marking</th>
<th>DC Spark-over Voltage</th>
<th>Maximum Impulse Spark-over Voltage</th>
<th>Minimum Insulation Resistance</th>
<th>Maximum Capacitance</th>
<th>Arc Voltage</th>
<th>Service Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN3E8-75HM</td>
<td>UNION</td>
<td>75V±20%</td>
<td><500V</td>
<td><0.50Ω</td>
<td>1 GΩ</td>
<td>~15V</td>
<td>@100V/S</td>
</tr>
<tr>
<td>UN3E8-75HMF</td>
<td>75H</td>
<td>75V±20%</td>
<td><500V</td>
<td><0.50Ω</td>
<td>1 GΩ</td>
<td>~15V</td>
<td>@100V/S</td>
</tr>
<tr>
<td>UN3E8-75HP</td>
<td>75H</td>
<td>75V±20%</td>
<td><500V</td>
<td><0.50Ω</td>
<td>1 GΩ</td>
<td>~15V</td>
<td>@100V/S</td>
</tr>
<tr>
<td>UN3E8-75H</td>
<td>75H</td>
<td>75V±20%</td>
<td><500V</td>
<td><0.50Ω</td>
<td>1 GΩ</td>
<td>~15V</td>
<td>@100V/S</td>
</tr>
<tr>
<td>UN3E8-90HM</td>
<td>UNION</td>
<td>90V±20%</td>
<td><500V</td>
<td><0.50Ω</td>
<td>1 GΩ</td>
<td>~15V</td>
<td>@100V/S</td>
</tr>
<tr>
<td>UN3E8-90HMF</td>
<td>90H</td>
<td>90V±20%</td>
<td><500V</td>
<td><0.50Ω</td>
<td>1 GΩ</td>
<td>~15V</td>
<td>@100V/S</td>
</tr>
<tr>
<td>UN3E8-90HP</td>
<td>90H</td>
<td>90V±20%</td>
<td><500V</td>
<td><0.50Ω</td>
<td>1 GΩ</td>
<td>~15V</td>
<td>@100V/S</td>
</tr>
<tr>
<td>UN3E8-90H</td>
<td>90H</td>
<td>90V±20%</td>
<td><500V</td>
<td><0.50Ω</td>
<td>1 GΩ</td>
<td>~15V</td>
<td>@100V/S</td>
</tr>
</tbody>
</table>

Specifications are subject to change without notice. Please refer to www.socay.com for current information.
UN3E8 Series

Electrical Characteristics (Continue)

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Marking</th>
<th>DC Spark-over Voltage</th>
<th>Maximum Impulse Spark-over Voltage</th>
<th>Minimum Insulation Resistance</th>
<th>Maximum Capacitance</th>
<th>Arc Voltage</th>
<th>Service Life</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>@100V/S</td>
<td>@100μs</td>
<td>@1kHz</td>
<td>@1MHz</td>
<td>@1A</td>
<td>Nominal Impulse Discharge Current</td>
</tr>
<tr>
<td>UN3E8-150HM</td>
<td>UNION 150H</td>
<td>150V±20%</td>
<td><500V</td>
<td><600V</td>
<td>1 GΩ (at 50V)</td>
<td><1.5pF</td>
<td>~25V</td>
</tr>
<tr>
<td>UN3E8-150HMF</td>
<td>UNION 150H</td>
<td>230V±20%</td>
<td><600V</td>
<td><700V</td>
<td>1 GΩ (at 100V)</td>
<td><1.5pF</td>
<td>~25V</td>
</tr>
<tr>
<td>UN3E8-150HP</td>
<td>UNION 150H</td>
<td>250V±20%</td>
<td><600V</td>
<td><700V</td>
<td>1 GΩ (at 100V)</td>
<td><1.5pF</td>
<td>~25V</td>
</tr>
<tr>
<td>UN3E8-300HM</td>
<td>UNION 300H</td>
<td>300V±20%</td>
<td><800V</td>
<td><900V</td>
<td>1 GΩ (at 100V)</td>
<td><1.5pF</td>
<td>~25V</td>
</tr>
<tr>
<td>UN3E8-300HMF</td>
<td>UNION 300H</td>
<td>350V±20%</td>
<td><800V</td>
<td><900V</td>
<td>1 GΩ (at 100V)</td>
<td><1.5pF</td>
<td>~25V</td>
</tr>
<tr>
<td>UN3E8-300HP</td>
<td>UNION 300H</td>
<td>420V±20%</td>
<td><900V</td>
<td><1000V</td>
<td>1 GΩ (at 100V)</td>
<td><1.5pF</td>
<td>~25V</td>
</tr>
<tr>
<td>UN3E8-400HM</td>
<td>UNION 400H</td>
<td>470V±20%</td>
<td><900V</td>
<td><1000V</td>
<td>1 GΩ (at 100V)</td>
<td><1.5pF</td>
<td>~25V</td>
</tr>
<tr>
<td>UN3E8-400HMF</td>
<td>UNION 400H</td>
<td>600V±20%</td>
<td><1100V</td>
<td><1200V</td>
<td>1 GΩ (at 100V)</td>
<td><1.5pF</td>
<td>~25V</td>
</tr>
<tr>
<td>UN3E8-400HP</td>
<td>UNION 400H</td>
<td>800V±20%</td>
<td><1200V</td>
<td><1400V</td>
<td>1 GΩ (at 100V)</td>
<td><1.5pF</td>
<td>~25V</td>
</tr>
</tbody>
</table>

Notes:

1. Terms in accordance with ITU-T K.12 and GB/T 9043-2008
2. At delivery AQL 0.65 level I, DIN ISO 2859
3. Tip or ring electrode to center electrode
4. Total current through center electrode, half-value through tip respectively ring electrode

SOCAY Electronics Co., Ltd.

www.socay.com

Revision March 6, 2014

Specifications are subject to change without notice.
Please refer to www.socay.com for current information.
Electrical Rating

<table>
<thead>
<tr>
<th>Item</th>
<th>Test Condition / Description</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Spark-over Voltage</td>
<td>The voltage is measured with a slowly rate of rise (\frac{dv}{dt} = 100V/s)</td>
<td></td>
</tr>
<tr>
<td>Impulse Spark-over Voltage</td>
<td>The maximum impulse spark-over voltage is measured with a rise time of (\frac{dv}{dt} = 100V/\mu s \text{ or } 1KV/\mu s)</td>
<td></td>
</tr>
<tr>
<td>Insulation Resistance</td>
<td>The resistance of gas tube shall be measured each terminal each other terminal, please see above spec.</td>
<td></td>
</tr>
<tr>
<td>Capacitance</td>
<td>The capacitance of gas tube shall be measured each terminal to each other terminal. Test frequency :1MHz</td>
<td></td>
</tr>
<tr>
<td>Nominal Impulse Discharge Current</td>
<td>The maximum current applying a waveform of 8/20μs that can be applied across the terminals of the gas tube. One hour after the test is completed, re-testing of the DC spark-over voltage does not exceed ±30% of the nominal DC spark-over voltage. Dwell time between pulses is 3 minutes.</td>
<td>To meet the specified value</td>
</tr>
</tbody>
</table>

Nominal Alternating Discharge Current

Rated RMS value of AC current at 50Hz, 1 sec. 10 times. Intervals: 3min. The DC spark-over voltage does not exceed ±30% of the nominal DC spark-over voltage. IR > 10³ohms.

Recommended soldering profile

Wave soldering

![Wave soldering diagram](image)

Soldering profile applied a single process

Reflow soldering

![Reflow soldering diagram](image)

Soldering profile applied a single process

Soldering Parameters - Hand Soldering

- Solder Iron Temperature: 350°C +/-5°C
- Heating Time: 5 seconds max.
3-Electrode Gas Discharge Tube (GDT)

UN3E8 Series

Cautions and warnings

- Gas discharge tubes (GDT) must not be operated directly in power supply networks.
- Gas discharge tubes (GDT) may become hot in case of longer periods of current stress (danger of burning).
- Gas discharge tubes (GDT) may be used only within their specified values. In the event of overload, the head contacts may fail or the component may be destroyed.
- Damaged Gas discharge tubes (GDT) must not be re-used.

Specifications are subject to change without notice. Please refer to www.socay.com for current information.