3-Electrode Gas Discharge Tube (GDT)

UN3E5 Series

Description
Gas discharge Tubes (GDT) are classical components for protecting the installations of the telecommunications. It is essential that IT and telecommunications systems -with their high-grade but sensitive electronic circuits - be protected by arresters. They are thus fitted at the input of the power supply system together with varistors and at the connection points to telecommunication lines. They have become equally indispensable for protecting base stations in mobile telephone systems as well as extensive cable television (CATV) networks with their repeaters and distribution systems.

These protective components are also indispensable in other sectors. In AC power transmission systems, they are often used with current-limiting varistors. In customer premises equipment such as DSL modems, WLAN routers, TV sets and cable modems. In air-conditioning equipment, the integral black-box concept offers graduated protection by combining arresters with varistors, PTC, diodes and inductor.

Features
- Non-Radioactive
- RoHS compliant
- Low insertion loss
- Excellent response to fast rising transients
- Ultra low capacitance
- 5KA surge capability tested with 8/20μs pulse as defined by IEC 61000-4-5

Applications
- Communication equipment
- CATV equipment
- Test equipment
- Data lines
- Power supplies
- Telecom SLIC protection
- Broadband equipment
- ADSL equipment, including ADSL2+
- XDSL equipment
- Satellite and CATV equipment
- Consumer electronics

Schematic Symbol

![Schematic Symbol Diagram]

- a = Tip
- b = Ring
- e = Ground
 (Center electrode)

Agency Approvals

<table>
<thead>
<tr>
<th>AGENCY</th>
<th>AGENCY FILE NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>E341061</td>
<td></td>
</tr>
</tbody>
</table>

Product Characteristics

<table>
<thead>
<tr>
<th>Materials</th>
<th>Leaded Device: Nickel-plated with Tinplated wires</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Mount</td>
<td>Dull Tin-plated</td>
</tr>
<tr>
<td>Product Marking</td>
<td>UNION XXXL</td>
</tr>
<tr>
<td>Glow to Arc Transition Current</td>
<td>XXX -Nominal voltage L -5KA</td>
</tr>
<tr>
<td>Glow Voltage</td>
<td>< 0.5 Amps</td>
</tr>
<tr>
<td>Storage and Operational Temperature</td>
<td>~60 Volts</td>
</tr>
<tr>
<td>Weight</td>
<td>UN3E5-XXXLM ~0.78g</td>
</tr>
<tr>
<td></td>
<td>UN3E5-XXXLM ~0.66g</td>
</tr>
<tr>
<td></td>
<td>UN2E5-XXXLSMD ~0.68g</td>
</tr>
<tr>
<td>Climatic category</td>
<td>40/ 90/ 21</td>
</tr>
</tbody>
</table>

@SOCAY Electronics Co., Ltd. 2014 Specifications are subject to change without notice. Please refer to www.socay.com for current information.
3-Electrode Gas Discharge Tube (GDT)

UN3E5 Series

Dimensions (Unit: mm)

Radial Leaded Devices (UN3E5-XXXL)

Without wire Devices (UN3E5-XXXL)

Surface Mount Devices (UN3E5-XXLSMD)

Electrical Characteristics

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Marking</th>
<th>DC Spark-over Voltage</th>
<th>Maximum Impulse Spark-over Voltage</th>
<th>Minimum Insulation Resistance</th>
<th>Maximum Capacitance</th>
<th>Arc Voltage</th>
<th>Service Life</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>@100V/S</td>
<td>@100V/μs</td>
<td>@1KV/μs</td>
<td>@1MHz</td>
<td>@1A</td>
<td>@8/20μs</td>
</tr>
<tr>
<td>UN3E5-75LM</td>
<td>UNION 75L</td>
<td>75V±20%</td>
<td><500V</td>
<td><600V</td>
<td>1 GΩ (at 25V)</td>
<td><1.5pF</td>
<td>-15V</td>
</tr>
<tr>
<td>UN3E5-75L</td>
<td>UNION 90L</td>
<td>90V±20%</td>
<td><500V</td>
<td><600V</td>
<td>1 GΩ (at 50V)</td>
<td><1.5pF</td>
<td>-15V</td>
</tr>
<tr>
<td>UN3E5-75LSMD</td>
<td>UNION 150L</td>
<td>150V±20%</td>
<td><500V</td>
<td><600V</td>
<td>1 GΩ (at 100V)</td>
<td><1.5pF</td>
<td>-20V</td>
</tr>
<tr>
<td>UN3E5-230LM</td>
<td>UNION 230L</td>
<td>230V±20%</td>
<td><600V</td>
<td><700V</td>
<td>1 GΩ (at 100V)</td>
<td><1.5pF</td>
<td>-20V</td>
</tr>
<tr>
<td>UN3E5-230L</td>
<td>UNION 250L</td>
<td>250V±20%</td>
<td><600V</td>
<td><700V</td>
<td>1 GΩ (at 100V)</td>
<td><1.5pF</td>
<td>-20V</td>
</tr>
<tr>
<td>UN3E5-300LM</td>
<td>UNION 300L</td>
<td>300V±20%</td>
<td><800V</td>
<td><900V</td>
<td>1 GΩ (at 100V)</td>
<td><1.5pF</td>
<td>-20V</td>
</tr>
<tr>
<td>UN3E5-300L</td>
<td>UNION 350L</td>
<td>350V±20%</td>
<td><800V</td>
<td><900V</td>
<td>1 GΩ (at 100V)</td>
<td><1.5pF</td>
<td>-20V</td>
</tr>
<tr>
<td>UN3E5-420LM</td>
<td>UNION 420L</td>
<td>420V±20%</td>
<td><900V</td>
<td><1000V</td>
<td>1 GΩ (at 100V)</td>
<td><1.5pF</td>
<td>-20V</td>
</tr>
<tr>
<td>UN3E5-420L</td>
<td>UNION 470L</td>
<td>470V±20%</td>
<td><900V</td>
<td><1000V</td>
<td>1 GΩ (at 100V)</td>
<td><1.5pF</td>
<td>-20V</td>
</tr>
<tr>
<td>UN3E5-600LM</td>
<td>UNION 600L</td>
<td>600V±20%</td>
<td><1100V</td>
<td><1200V</td>
<td>1 GΩ (at 100V)</td>
<td><1.5pF</td>
<td>-20V</td>
</tr>
</tbody>
</table>

Notes:

1. Terms in accordance with ITU-T K.12 and GB/T 9043-2008
2. At delivery AQL 0.65 level II, DIN ISO 2859
3. Tip or ring electrode to center electrode
4. Total current through center electrode, half value through tip respectively ring electrode

Dimensions

Electrical Characteristics

Recommended Pad Outline

Notes:

1. Terms in accordance with ITU-T K.12 and GB/T 9043-2008
2. At delivery AQL 0.65 level II, DIN ISO 2859
3. Tip or ring electrode to center electrode
4. Total current through center electrode, half value through tip respectively ring electrode
3-Electrode Gas Discharge Tube (GDT)

UN3E5 Series

Electrical Rating

<table>
<thead>
<tr>
<th>Item</th>
<th>Test Condition / Description</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Spark-over Voltage</td>
<td>The voltage is measured with a slowly rate of rise $dv / dt=100V/s$</td>
<td></td>
</tr>
<tr>
<td>Impulse Spark-over Voltage</td>
<td>The maximum impulse spark-over voltage is measured with a rise time of $dv / dt=100V/\mu s$ or $1KV/\mu s$</td>
<td></td>
</tr>
<tr>
<td>Insulation Resistance</td>
<td>The resistance of gas tube shall be measured each terminal each other terminal, please see above spec.</td>
<td></td>
</tr>
<tr>
<td>Capacitance</td>
<td>The capacitance of gas tube shall be measured each terminal to each other terminal. Test frequency :1MHz</td>
<td></td>
</tr>
<tr>
<td>Nominal Impulse Discharge Current</td>
<td>The maximum current applying a waveform of 8/20μs that can be applied across the terminals of the gas tube. One hour after the test is completed, re-testing of the DC spark-over voltage does not exceed ±30% of the nominal DC spark-over voltage. Dwell time between pulses is 3 minutes.</td>
<td>To meet the specified value</td>
</tr>
</tbody>
</table>

Nominal Alternating Discharge Current

Rated RMS value of AC current at 50Hz, 1 sec. 10 times. Intervals: 3min. The DC spark-over voltage does not exceed ±30% of the nominal DC spark-over voltage.

IR > 10 ohms.

Recommended soldering profile

Wave soldering

- Normal curve
- Limit curve

Reflow soldering

- Normal curve
- Limit curve

Soldering profile applied a single process

Soldering Parameters - Hand Soldering

- Solder Iron Temperature: 350°C +/-5°C
- Heating Time: 5 seconds max.
3-Electrode Gas Discharge Tube (GDT)

UN3E5 Series

Part Numbering

UN3E5 - XXXLM

M, with wire
No., without wire
SMD, Surface Mount

8/20μs Level L, 5KA

Nominal DC Spark-over Voltage
75 = 75V 300=300V
90 =90V 350 =350V
150 = 150V 470 =470V
230 = 230V 600 = 600V

Series

Packaging

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN3E5-XXLM</td>
<td>100PCS per Tray, 10 Trays / Inner</td>
<td>1000</td>
</tr>
<tr>
<td>UN3E5-XXXL</td>
<td>100PCS per Tray, 10 Trays / Inner</td>
<td>1000</td>
</tr>
<tr>
<td>UN3E5-XXLSMD</td>
<td>16mmTape & 13" Reel</td>
<td>1000</td>
</tr>
</tbody>
</table>

Tape and Reel Dimension (Unit: mm)

Tray Dimension (Unit: mm)

Cautions and warnings

- Gas discharge tubes (GDT) must not be operated directly in power supply networks.
- Gas discharge tubes (GDT) may become hot in case of longer periods of current stress (danger of burning).
- Gas discharge tubes (GDT) may be used only within their specified values. In the event of overload, the head contacts may fail or the component may be destroyed.
- Damaged Gas discharge tubes (GDT) must not be re-used.